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Abstract

We present an approach to combining distributional semantic representations induced from

text corpora with manually constructed lexical semantic networks. While both kinds of

semantic resources are available with high lexical coverage, our aligned resource combines

the domain specificity and availability of contextual information from distributional models

with the conciseness and high quality of manually crafted lexical networks. We start with a

distributional representation of induced senses of vocabulary terms, which are accompanied

with rich context information given by related lexical items. We then automatically disam-

biguate such representations to obtain a full-fledged proto-conceptualization, i.e. a typed

graph of induced word senses. In a final step, this proto-conceptualization is aligned to a

lexical ontology, resulting in a hybrid aligned resource. Moreover, unmapped induced senses

are associated with a semantic type in order to connect them to the core resource. Manual

evaluations against ground-truth judgments for different stages of our method as well as

an extrinsic evaluation on a knowledge-based Word Sense Disambiguation benchmark all

indicate the high quality of the new hybrid resource. Additionally, we show the benefits of

enriching top-down lexical knowledge resources with bottom-up distributional information

from text for addressing high-end knowledge acquisition tasks such as cleaning hypernym

graphs and learning taxonomies from scratch.

1 Introduction

Automatic enrichment of semantic resources is an important problem (Biemann

2005; Jurgens and Pilehvar 2016) as it attempts to alleviate the extremely costly pro-

cess of manual lexical resource (LR) construction. Distributional semantics (Turney

and Pantel 2010; Baroni, Dinu and Kruszewski 2014; Clark 2015) provides an

alternative automatic meaning representation framework that has been shown to

benefit many text-understanding applications.
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2 C. Biemann et al.

Recent years have witnessed an impressive amount of work on combining

the symbolic semantic information available in manually constructed LRs with

distributional information, where words are usually represented as dense numerical

vectors, a.k.a. embeddings. Examples of such approaches include methods that

modify the Skip-gram model (Mikolov et al. 2013) to learn sense embeddings

(Chen, Liu and Sun 2014) based on the sense inventory of WordNet, methods

that learn embeddings of synsets as given in an LR (Rothe and Schütze 2015)

or methods that acquire word vectors by applying random walks over LRs to

learn a neural language model (Goikoetxea, Soroa and Agirre 2015). Besides,

alternative approaches like NASARI (Camacho-Collados, Pilehvar and Navigli

2015b) and MUFFIN (Camacho-Collados, Pilehvar and Navigli 2015a) looked

at ways to produce joint lexical and semantic vectors for a common representation

of word senses in text and in LRs. Retrofitting approaches, e.g. Faruqui et al.

(2015), efficiently ‘consume’ LRs as input in order to improve the quality of word

embeddings, but do not add anything to the resource itself. Other approaches, such

as AutoExtend (Rothe and Schütze 2015), NASARI and MUFFIN, learn vector

representations for existing synsets that can be added to the resource, however are

not able to add missing senses discovered from text.

In these contributions, the benefits of such hybrid knowledge sources for tasks in

computational semantics such as semantic similarity and Word Sense Disambigu-

ation (WSD) (Navigli 2009) have been extensively demonstrated. However, none of

the existing approaches, to date, have been designed to use distributional information

for the enrichment of lexical semantic resources, i.e. adding new symbolic entries.

In this article, we consequently set out to filling this gap by developing a framework

for enriching lexical semantic resources with distributional semantic models. The

goal of such framework is the creation of a resource that brings together the ‘best

of both worlds’, namely the precision and interpretability from the lexicographic

tradition that describes senses and semantic relations manually, and the versatility

of data-driven, corpus-based approaches that derive senses automatically.

An LR enriched with additional knowledge induced from text can boost the

performance of natural language understanding tasks like WSD or Entity Linking

(Mihalcea and Csomai 2007; Rospocher et al. 2016), where it is crucial to have a

comprehensive list of word senses as well as the means to assign the correct of many

possible senses for a given word in context.

Consider, for instance, the following sentence:

Regulator of calmodulin signaling (RCS) knockout mice display anxiety-like

behavior and motivational deficits.1

No synset for ‘RCS’ can be found in either WordNet (Fellbaum 1998) or BabelNet

(Navigli and Ponzetto 2012a), yet it is distributionally related to other biomedical

concepts and thus can help to disambiguate the ambiguous term mice to its ‘animal’

meaning, as opposed to the ‘computer peripheral device’.

Our approach yields a hybrid resource that combines symbolic and statistical

meaning representations while (i) staying purely on the lexical-symbolic level,

1 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3622044
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Distributional semantics for enriching lexical semantic resources 3

(ii) explicitly distinguishing word senses and (iii) being human readable. These

properties are crucial to be able to embed such a resource in an explicit semantic data

space such as, for instance, the Linguistic Linked Open Data ecosystem (Chiarcos,

Hellmann and Nordhoff 2012). According to Norvig (2016), the semantic web

and natural language understanding are placed at the heart of current efforts to

understand the web on a large scale.

We take the current line of research on hybrid semantic representations one

step forward by presenting a methodology for inducing distributionally based sense

representations from text, and for linking them to a reference LR. Central to our

method is a novel sense-based distributional representation that we call proto-

conceptualization (PCZ). A PCZ is a repository of word senses induced from text,

where each sense is represented with related senses, hypernymous senses and aggreg-

ated clues for contexts in which the respective sense occurs in text. Besides, to further

improve interpretability, each sense has an associated image. We build a bridge

between the PCZ and lexical semantic networks by establishing a mapping between

these two kinds of resources.2 This results in a new knowledge resource that we refer

to as hybrid aligned resource (HAR); here, senses induced from text are aligned to a

set of synsets from a reference LR, whereas induced senses that cannot be matched

are included as additional synsets. By linking our distributional representations to

a repository of symbolically encoded knowledge, we are able to complement wide-

coverage statistical meaning representations with explicit relational knowledge as

well as to extend the coverage of the reference LR based on the senses induced from

a text collection. The main contributions of this article are listed as follows:

• A framework for enriching lexical semantic resources: We present a method-

ology for combining information from distributional semantic models with

manually constructed lexical semantic resources.

• A hybrid lexical semantic resource: We apply our framework to produce a

novel hybrid resource obtained by linking disambiguated distributional lexical

semantic networks to WordNet and BabelNet.

• Applications of the hybrid resource: Besides intrinsic evaluations of our

approach, we test the utility of our resource extrinsically on the tasks of

WSD and taxonomy induction, demonstrating the benefits of combining

distributional and symbolic lexical semantic knowledge.

The remainder of this article is organized as follows: we first review related work

in Section 2 and provide an overview of our framework to build a HAR from

distributional semantic vectors and a reference knowledge graph in Section 3. Next,

we provide details on our methodology to construct PCZs and to link them to an

LR in Sections 4 and 5, respectively. In Section 6, we benchmark the quality of

our resource in different evaluation settings, including an intrinsic and an extrinsic

evaluation on the task of knowledge-based WSD using a dataset from a SemEval

task. Section 7 provides two application-based evaluations that demonstrate how

2 We use WordNet and BabelNet; however, our approach can be used with similar resources,
e.g. those listed at http://globalwordnet.org/wordnets-in-the-world.
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our hybrid resource can be used for taxonomy induction. We conclude with final

remarks and future directions in Section 8.

2 Related work

2.1 Automatic construction of lexical semantic resources

In the past decade, large efforts have been undertaken to research the automatic ac-

quisition of machine-readable knowledge on a large scale by mining large repositories

of textual data (Banko et al. 2007; Carlson et al. 2010; Fader, Soderland and Etzioni

2011; Faruqui and Kumar 2015). At this, collaboratively constructed resources have

been exploited, used either in isolation (Bizer et al. 2009; Ponzetto and Strube 2011;

Nastase and Strube 2013) or complemented with manually assembled knowledge

sources (Suchanek, Kasneci and Weikum 2008; Gurevych et al. 2012; Navigli and

Ponzetto 2012a; Hoffart et al. 2013). As a result of this, recent years have seen a

remarkable renaissance of knowledge-rich approaches for many different artificial

intelligence tasks (Hovy, Navigli and Ponzetto 2013). Knowledge contained within

these very large knowledge repositories, however, has major limitations in that

these resources typically do not contain any linguistically grounded probabilistic

representation of concepts, instances and their attributes – namely, the bridge

between wide-coverage conceptual knowledge and its instantiation within natural

language texts. While there are large-scale LRs derived from large corpora such

as ProBase (Wu et al. 2012), these are usually not sense aware but conflate the

notions of term and concept. With this work, we provide a framework that aims

at augmenting any of these wide-coverage knowledge sources with distributional

semantic information, thus extending them with text-based contextual information.

Another line of research has looked at the problem of Knowledge Base Completion

(Nickel et al. 2016). Many approaches to Knowledge Base Completion focus on

exploiting other KBs (Wang et al. 2012; Bryl and Bizer 2014) for acquiring additional

knowledge, or rely on text corpora – either based on distant supervision (Snow,

Jurafsky and Ng 2006; Mintz et al. 2009; Aprosio, Giuliano and Lavelli 2013)

or by rephrasing KB relations as queries to a search engine (West et al. 2014)

that returns results from the web as corpus. Alternative methods primarily rely on

existing information in the KB itself (Bordes et al. 2011; Jenatton et al. 2012; Socher

et al. 2013; Klein, Ponzetto and Glavaš 2017) to simultaneously learn continuous

representations of KB concepts and KB relations by exploiting the KB structure

as the ground truth for supervision, inferring additional relations from existing

ones. Lexical semantic resources and text are synergistic sources, as shown by

complementary work from Faruqui et al. (2015), who improve the quality of semantic

vectors based on lexicon-derived relational information.

Here, we follow this intuition of combining structured knowledge resources with

distributional semantic information from text, but focus instead on providing

hybrid semantic representations for KB concepts and entities, as opposed to the

classification task of Knowledge Base Completion that aims at predicting additional

semantic relations between known entities.
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Distributional semantics for enriching lexical semantic resources 5

2.2 Combination of distributional semantics with lexical resources

Several prior approaches combined distributional information extracted from text

with information available in LRs like e.g. WordNet. This includes a model (Yu and

Dredze 2014) to learn word embeddings based on lexical relations of words from

WordNet and PPDB (Ganitkevitch, Van Durme and Callison-Burch 2013). The

objective function of this model combines that of the skip-gram model (Mikolov

et al. 2013) with a term that takes into account lexical relations of target words. In

work aimed at retrofitting word vectors (Faruqui et al. 2015), a related approach

was proposed that performs post-processing of word embeddings on the basis of

lexical relations from LRs. Finally, Pham, Lazaridou and Baroni (2015) also aim

at improving word vector representations by using lexical relations from WordNet,

targeting similar representations of synonyms and dissimilar representations of

antonyms. While all these three approaches show excellent performance on word

relatedness evaluations, they do not model word senses – in contrast to other work

aimed instead at learning sense embeddings using the word sense inventory of

WordNet (Jauhar, Dyer and Hovy 2015).

A parallel line of research has recently focused on learning unified statistical and

symbolic semantic representations. Approaches aimed at providing unified semantic

representations from distributional information and LRs have accordingly received

an increasing level of attention (Chen et al. 2014; Goikoetxea, Soroa and Agirre

2015; Rothe and Schütze 2015; Camacho-Collados et al. 2015b; Nieto Piña and

Johansson 2016), inter alia (cf. also our introductory discussion in Section 1) and

hybrid meaning representations have been shown to benefit challenging semantic

tasks such as WSD and semantic similarity at word level and text level.

All these diverse contributions indicate the benefits of hybrid knowledge sources

for learning word and sense representations; here, we further elaborate along this

line of research and develop a new hybrid resource that combines information

from the knowledge graph with distributional sense representations that are human

readable and easy to interpret, in contrast to dense vector representations, a.k.a.

word embeddings like GloVe (Pennington, Socher and Manning 2014) or word2vec

(Mikolov et al. 2013). As a result of this, we are able to provide, to the best of our

knowledge, the first hybrid knowledge resource that is fully integrated and embedded

within the semantic web ecosystem provided by the Linguistic Linked Open Data

cloud (Chiarcos, Hellmann and Nordhoff 2012). Note that this complementary to

recent efforts aimed at linking natural language expressions in text with semantic

relations found within LOD knowledge graphs (Krause et al. 2015), in that we focus

instead on combining explicit semantic information with statistical, distributional

semantic representations of concepts and entities into an augmented resource.

3 Enriching lexical semantic resources with distributional semantics

The construction of our HAR builds upon methods used to link various manu-

ally constructed LRs to construct BabelNet (Ponzetto and Navigli 2010) and

UBY (Gurevych et al. 2012), among others. In our method, however, linking

is performed between two networks that are structurally similar, but have been
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Graph of Related Words
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feature representations

§4.5Graph of Related Senses

Fig. 1. Overview of the proposed framework for enriching lexical resources: a distributional

semantic model is used to construct a disambiguated distributional lexical semantic network

(a proto-conceptualization, PCZ), which is subsequently linked to the lexical resource.

Table 1. Examples of entries of the PCZ resource for words mouse and keyboard
after disambiguation of their related terms and hypernyms (Section 4.4)

Word sense Related senses Hypernyms Context clues

mouse:0 rat:0, rodent:0, monkey:0, ... animal:0, species:1, ... rat:conj and, white-footed:amod, ...

mouse:1 keyboard:1, printer:0, computer:0 ... device:1, equipment:3, ... click:-prep of, click:-nn, ....

keyboard:0 piano:1, synthesizer:2, organ:0 ... instrument:2, device:3, ... play:-dobj, electric:amod, ..

keyboard:1 keypad:0, mouse:1, screen:1 ... device:1, technology:0 ... computer:nn, qwerty:amod ...

Context clues are represented as typed dependency relations to context words in the input

corpus, e.g. keyboard:0 appears as direct object of ‘to play’. Trailing numbers indicate

automatically induced sense identifiers.

constructed in two completely different ways: one resource is built using an

unsupervised bottom-up approach from text corpora, while the second is constructed

in a top-down manner using manual labor, e.g. codified knowledge from human

experts such as lexicographers (WordNet). In particular, the method consists of

following two major phases, as illustrated in Figure 1:

(1) Construction of a PCZ from text. Initially, a symbolic disambiguated distribu-

tional lexical semantic network, called a PCZ, is induced from a text corpus. To

this end, we first create a sense inventory from a large text collection using graph-

based word sense induction as provided by the JoBimText project (Biemann

and Riedl 2013). The resulting structure contains induced word senses, their yet

undisambiguated related terms, as well as context clues per term. First, we obtain

sense representations by aggregating context clues over sense clusters. Second,

we disambiguate related terms and hypernyms to produce a fully disambiguated

resource where all terms have a sense identifier. Hence, the PCZ is a repository of

corpus-induced word senses, where each sense is associated with a list of related

senses, hypernymous senses, as well as aggregated contextual clues (Table 1).

(2) Linking a PCZ to an LR. Next, we align the PCZ with an existing LR. In

our work, we make use of lexical semantic resources such as WordNet and

BabelNet featuring large vocabularies of lexical units with explicit meaning

representations as well as semantic relations between these. In this phase, we
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Distributional semantics for enriching lexical semantic resources 7

create a mapping between the two sense inventories from the PCZ and the LR,

and combine them into a new extended sense inventory, our HAR. Finally, to

obtain a complete unified resource, we link the ‘orphan’ PCZ senses for which

no corresponding sense could be found by inferring their type (i.e. their most

specific generalization) in the LR.

In the following sections, we present each stage of our approach in detail.

4 Construction of a proto-conceptualization

Our method for PCZ construction consists of the four steps illustrated in the upper

half of Figure 1, inducing a graph of semantically related words (Section 4.1),

word sense induction (Section 4.2), labeling of clusters with hypernyms and images

(Section 4.3) and disambiguation of related words and hypernyms with respect

to the induced sense inventory (Section 4.4). Further, we describe an additional

property of our PCZs, namely the availability of corpus-derived context clues

(Section 4.5), as well as alternative ways to construct PCZs on the basis of dense

vector representations (Section 4.6).

The PCZ resource with a pipeline as outlined in Figure 1 consists of word senses

induced from a corpus. For each word sense, similar and superordinate terms are

disambiguated with respect to the induced sense inventory: the structure of a PCZ

resembles that of a lexical semantic resource. Sense distinctions and distributions

depend on the training corpus, which causes the resource to adapt to its domain. In

contrast to manually created resources, each sense also contains context clues that

allow disambiguating polysemous terms in context. Table 1 shows example senses

for the terms mouse and keyboard. Note that PCZs may contain many entries for

the same word, e.g. mouse has two senses, the ‘animal’ and the ‘computer device’,

respectively. The context clues are not disambiguated, since they are meant for

directly matching (undisambiguated) textual context. PCZs can be interpreted by

humans at two levels, as exemplified in Figure 2.

(1) The word sense inventory is interpretable due to the use of the hypernyms, images

and related senses.

(2) The sense feature representation is interpretable due to the use of the sparse

context clues relevant to the sense.

Note that while in our experiments we rely on a count-based sparse distributional

model, the PCZ is a symbolic structure that can be also constructed using alternative

distributional models, e.g. word and sense embeddings (cf. Section 4.6).

4.1 Inducing a graph of semantically related words

The goal of this first stage is to build a graph of semantically related words,

with edges such as (mouse, keyboard, 0.78), i.e. a distributional thesaurus (DT) (Lin

1998). To induce such graph in an unsupervised way, we rely on a count-based

approach to distributional semantics based on the JoBimText framework (Biemann

and Riedl 2013). Each word is represented by a bag of syntactic dependencies
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Fig. 2. (Colour online) Word sense representations of the word mouse induced from text

generated using the online demo at http://jobimtext.org/wsd. The sense labels (device

and animal) are obtained automatically based on cluster labeling with hypernyms. The images

associated with the senses are retrieved with a search engine using the queries: mouse device

and mouse animal. Note the ‘BabelNet Link’ button, leading to the sense in BabelNet linked

to the induced sense with the algorithm described in Section 5.

such as conj and(rat, •) or prep of(click,•) extracted from the Stanford Dependen-

cies (De Marneffe, MacCartney and Manning 2006) obtained with the PCFG model

of the Stanford parser (Klein and Manning 2003).

Features of each word are weighted and ranked using the Local Mutual In-

formation (LMI) metric (Evert 2005). Subsequently, these word representations are

pruned keeping 1,000 most salient features per word and 1,000 most salient words

per feature. The pruning reduces computational complexity and noise (Riedl 2016).

Finally, word similarities are computed as the number of common features for two

words. This is, again, followed by a pruning step in which for every word, only

the 200 most similar terms are kept. The resulting graph of word similarities is

browsable online (Ruppert et al. 2015).3

There are many possible ways to compute a graph of semantically similar words,

including count-based approaches, such as Lin (1998), Curran (2002) or prediction-

based approaches, such as word2vec (Mikolov et al. 2013), GloVe (Pennington et al.

3 Word and sense representations used in our experiments can be inspected by selecing the
‘Stanford (English)’ model in the JoBimViz demo at http://jobimtext.org/jobimviz/.
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Distributional semantics for enriching lexical semantic resources 9

Table 2. Comparison of state-of-the-art count- and prediction-based methods to
distributional semantics on the basis of the average of the averaged similarity scores
between each term in the DT and its top-10 most similar terms using the WordNet path
similarity measure (higher means better) averaged over 1,000 high- and low-frequency
words

Method High Low

Lin’s similarity (Lin 1998) 0.2872 0.2291

t-test (Curran 2002) 0.2589 0.2067

Skip-gram (Mikolov et al. 2013) 0.2548 0.2068

Skip-gram with dependency features (Levy and Goldberg 2014) 0.2632 0.1992

LMI with trigram features (Riedl and Biemann 2013) 0.2621 0.2003

LMI with dependency features (Riedl and Biemann 2013) 0.2933 0.2337

In this article, we use ‘LMI with dependency features’ as the similarity function.

2014) and word2vecf (Levy and Goldberg 2014). Here, we opt for a count-based

approach to distributional semantics based on Local Mutual Information based

on two considerations, namely their higher quality of similarity scores and their

interpretability.

A thorough experimental comparison of different approaches to computing

distributional semantic similarity to build a DT is presented by Riedl (2016, Section

5.7.4) using the WordNet taxonomy as a gold standard. In this evaluation, different

DTs are compared by computing, for each term, the average similarity between the

term itself and its k most similar terms (based on the DT) using the WordNet path-

based similarity measure (Pedersen, Patwardhan and Michelizzi 2004). The overall

similarity of the DT with the ground-truth taxonomy (e.g. WordNet) is then given

by the average similarity score across all terms. Using this evaluation framework,

Riedl is able to compare a wide range of different approaches for the construction of

a weighted similarity graph, including state-of-the-art approaches based on sparse

vector representations (Lin 1998; Curran 2002), as well as dense representations

based on word2vec (Mikolov et al. 2013) and word2vecf, which makes use of

dependency-based features (Levy and Goldberg 2014). In his experiment, all methods

were trained on the same corpus, and all dependency-based models, including the

Skip-gram approach trained with the word2vecf tool (Levy and Goldberg 2014),

used the same feature representations.

We report some of the results from Riedl’s experiments in Table 2. In this

experiment, 1,000 infrequent and 1,000 frequent nouns proposed by Weeds, Weir

and McCarthy (2004) were used. Dependency-based models (all models except the

Skip-gram) used syntactic features extracted using the Stanford Parser. In addition

to this dependency-based model, we report results of the same model based on

trigram features, where a context is formed by the concatenation of the two adjacent

words. All models were trained on the 105 million sentences of newspaper data

described in Section 6.1. Further details of the experiment, e.g. parameters of the

models, are available in Riedl (2016, Section 5.7.4).

The performance figures indicate that the method we use here yields the overall

best performance in terms of semantic similarity compared to other count-based or
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Fig. 3. (Colour online) Example of graph-based word sense induction for the word mouse:

the two circles denote two induced word senses, as found by analysis of the ego graph of

mouse.

word-embedding approaches (including both word2vec and word2vecf). Besides, the

results generally indicate the advantage of using dependency-based context repres-

entations over the bag-of-words representations. This is in line with prior studies

on semantic similarity (Padó and Lapata 2007; Van de Cruys 2010; Panchenko

and Morozova 2012). For this reason, we use syntactic features in our experiments

but would like to stress that the overall framework also allows simpler context

representations, giving rise to its application to resource-poor languages.

The second reason for using the Local Mutual Information approach to compute a

graph of semantically related words is the fact that the resulting word representations

are human interpretable, since words are represented by sparse features – as opposed

to dense features such as those found within word embeddings. Besides being a value

on its own, this feature enables a straightforward implementation of word sense

disambiguation methods on the basis of the learned representations (Panchenko

et al. 2017a, 2017c).

4.2 Word sense induction

In the next stage, we induce a sense inventory on top of the DT by clustering

ego-networks of similar words. In our case, an inventory represents senses by a word

cluster, such as {rat, rodent, monkey, . . . } for the ‘animal’ sense of the word mouse.

Sense induction is conducted one word t at the time on the DT. First, we retrieve

nodes of the ego-network G of t being the N most similar words of t according to the

DT . Figure 3 presents a sample ego network of related words.4 Note that the target

word t itself is excluded during clustering. Second, we connect each node in G to its

n most similar words according to DT . The n parameter regulates the granularity

of the induced sense inventory: we experiment with n ∈ {200, 100, 50} and N = 200.

4 See the Serelex.org system for further visualizations of ego networks of semantically
related words (Panchenko et al. 2013).
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Finally, the ego network is clustered with Chinese Whispers (Biemann 2006), a

non-parametric algorithm that discovers the number of clusters (word senses, in our

case) automatically. The algorithm is iterative and proceeds in a bottom-up fashion.

Initially, all nodes have distinct cluster identifiers. At each step, a node obtains the

cluster identifier from the dominant cluster in its direct neighborhood, which is the

cluster with the highest sum of edge weights to the current node.

The choice of Chinese Whispers among other algorithms, such as

HyperLex (Véronis 2004) or Markov Cluster Algorithm (Van Dongen 2008), was

motivated by the absence of meta-parameters, its state-of-the-art performance on

Word Sense Induction tasks (Di Marco and Navigli 2013), as well as its efficiency

(time-linear in the number of edges), see Cecchini, Riedl and Biemann (2017) for a

comparative evaluation.

4.3 Labeling induced senses with hypernyms and images

At the third stage, each sense cluster is automatically labeled to characterize it in

more detail and to improve its interpretability. First, we extract hypernyms from the

input corpus. Here, we rely on the Hearst (1992) patterns, yet the approach we use can

benefit also from more advanced methods for extraction of hypernyms, e.g. HypeNet

(Shwartz, Goldberg and Dagan 2016) or the Dual Tensor Model (Glavaš and

Ponzetto 2017). Note that despite their simplicity, Hearst patterns still are a strong

baseline, used for applications like, for instance, taxonomy induction (Panchenko

et al. 2016; Bordea, Lefever and Buitelaar 2016).

Second, we rank the quality of a hypernym h to act as generalization for the

meaning expressed by cluster c on the basis of the product of two scores, namely

hypernym relevance and coverage:

relevance(c, h) =
∑

w∈c
rel(t, w) · freq(w, h)

coverage(c, h) =
∑

w∈c
min(freq(w, h), 1)

where rel(t, w) is the relatedness of the cluster word w to the target word t (the

ambiguous word in an ego network, cf. Figure 3) and freq(w, h) is the frequency

of the hypernymy relation (w, h) as extracted via patterns. Thus, a highly ranked

hypernym h needs to be observed frequently in a hypernym pattern, but also needs

to be confirmed by several cluster words. This stage results in a ranked list of labels

that specify the word sense, which we add to the PCZ. The highest scoring hypernym

is further used in the title of the word sense, e.g. mouse (device) or mouse (animal).

Finally, to further improve the interpretability of the induced senses, we add

images to our sense clusters as follows. Previous work (Faralli and Navigli 2012)

showed that web search engines can be used to bootstrap sense-related information.

Consequently, we assign an image to each word in the cluster querying the Bing

image search API5 using the query composed of the target word and its highest

5 https://azure.microsoft.com/en-us/services/cognitive-services/search
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Algorithm 1 Disambiguation of related terms and hypernyms

Require: WSI , a word sense inventory in the form of a set of tuples (word, sense id, cluster,
isas), where cluster and isas have no sense identifiers.

Ensure: PCZ , a proto-conceptualization in the form of a set of tuples (word, sense id, cluster′,
isas′), where cluster′ and isas′ are disambiguated with respect to sense inventory of the
WSI .

1: PCZ = ∅
2: for all (word, sense id, cluster, isas) ∈ WSI do
3: cluster′ = disambiguate (cluster, word,WSI)
4: isas′ = disambiguate (isas, word,WSI)
5: PCZ = PCZ ∪ (word, sense id, cluster′, isas′)

function disambiguate (cluster, cword,WSI)
6: cluster′ = ∅
7: context = cluster ∪ (cword, 1.0)
8: for all word, sim ∈ cluster do
9: sense id = −1, max sim = 0

10: for all (dword, dsense id, dcluster, disas) ∈ getSenses(word,WSI) do
11: if sim(context, dcluster) > max sim then
12: sense id = dsense id
13: max sim = sim
14: cluster′ = cluster′ ∪ (word, sim, sense id)
15: return cluster′

scoring hypernym, e.g. mouse device. The first image result of this query is selected

to represent the induced word sense. This step is optional in our pipeline, and is

primarily aimed at improving the user interaction with the word sense inventory.

The resulting sense representation is illustrated in Figure 2 for two induced senses

of the word mouse. Providing to the user hypernyms, images, list of related senses

and the list of the most salient context clues ensures interpretability of each

sense. Note that all these elements are obtained without manual intervention, see

Panchenko et al. (2017b) for more details.

4.4 Disambiguation of related terms and hypernyms

Next, we disambiguate the lexical graphs induced in the previous step. Each word

in the induced inventory has one or more senses; however, the list of related words

and hypernyms of each induced sense does not carry sense information yet. In our

example (Table 1), the sense of mouse for the entry keyboard:1 could have either

referred to the ‘animal’ or the ‘electronic device’. Consequently, we apply a semantic

closure procedure to arrive at a resource in which all terms get assigned a unique,

best-fitting sense identifier. Our method assigns each disambiguation target word

w – namely, a similar or superordinate term from each sense of the induced word

sense inventory – the sense ŝ whose context (i.e. the list of similar or superordinate

terms) has the maximal similarity with the target word’s context (i.e. the other

words in the target word’s list of similar or superordinate items). We use the cosine

similarity between context vectors to find the most appropriate sense ŝ matching the

‘context’ of an ambiguous word cluster one of its ‘definitions’ WSI(w′).cluster:

ŝ = argmax
(w′ , ,cluster, )∈WSI(w)

cos(WSI(w′).cluster, cluster). (1)
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This way we are able to link, for instance, keyboard in the list of similar terms for

mouse:1 to its ‘device’ sense (keyboard:1), since mouse:1 and keyboard:1 share a

large amount of terms from the information technology domain. This simple, local

approach is scalable (cf. the complexity analysis at the end of this section) and it

performs well, as we show later in the evaluation.

Algorithm 1 presents our method to compute the semantic closure. The input is

a JoBimText model as a set of tuples (word, sense id, cluster, isas), where cluster is a

list of similar terms in the format (wordi, simi) with simi being the similarity value

between word and wordi, and isas is a list of hypernym terms in the same format. The

algorithm outputs a PCZ in the form of a set of tuples (word, sense id, cluster′, isas′),

where cluster′ is a list of disambiguated similar terms and isas′ is a list of disambigu-

ated hypernym terms both in the format (wordi, simi, sense idi). The algorithm starts

by creating an empty PCZ structure PCZ . For each entry of an input JoBimText

model, we disambiguate related words (cluster) and hypernym terms (isas) with the

function Disambiguate (lines 3–4). This function retrieves for each word in a cluster

the set of its senses with the GetSenses function. Next, we calculate similarity

between the cluster of the word and the cluster of the candidate sense (denoted as

dcluster). The wordi obtains the sense id of the candidate sense that maximizes this

similarity (lines 8–13).

Our disambiguation approach is a rather straightforward algorithm based on sim-

ilarity computations. Despite its simplicity, we are able to achieve a disambiguation

accuracy in the high ninety per cent range for noun word senses, while at the same

time having a time-linear complexity in the number of word senses, as we will show

in the evaluation below (Section 6.2). We can assume, in fact, that the function

GetSenses has a run-time complexity of O(1) and the function cos (Equation (1))

has complexity O(m), where m is the average number of neighbors of each word

sense. Then, the run-time complexity of the algorithm is O(n ∗m2 ∗ k), where n is the

overall number of induced word senses, and k is the average polysemy of a word.

Since k is small and m is bound by the maximum number of neighbors (200 in

our case), the amortized run time is linear in the vocabulary size. This makes our

approach highly scalable: in recent experiments, we have been accordingly able to

apply our method at web scale on the CommonCrawl,6 the largest existing public

repository of web content.

4.5 Construction of sense feature representations

Finally, we calculate feature representations for each sense in the induced inventory –

that is, grammatical dependency features that are meant to provide an aggregated

representation of the contexts in which a word sense occurs.

We assume that a word sense is a composition of cluster words that represent

the sense and accordingly define a sense vector as a function of word vectors

representing cluster items. Let W be a set of all words in the training corpus and

let Si = {w1, . . . , wn} ⊆ W be a sense cluster obtained in a previous step. Consider

6 https://commoncrawl.org
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14 C. Biemann et al.

Table 3. Sense inventories derived from the Wikipedia corpus via a sparse
count-based (JoBimText) and dense predict-based (Skip-gram) distributional models

Sparse vectors Dense vectors

(JoBimText) (word2vec)

Mouse (animal) Rat, rodent, monkey, pig, Rat, hamster, hedgehog, mole,

animal, human, rabbit, cow monkey, kangaroo, skunk

Mouse (device) Keyboard, computer, printer, Cursor, keyboard, AltGr, chording,

joystick, stylus, modem D-pad, button, trackball

a function vecw : W → R
m that maps words to their vectors and a function

γi : W → R that maps cluster words to their weight in the cluster Si. The sense

vector representation (the context clues) is then a weighted average of word vectors:

Si =

∑n
k=1 γi(wk)vecw (wk)∑n

k=1 γi(wk)
. (2)

Table 1 (column 4) provides an example of such feature representations. While

the averaged word vectors are ambiguous and can contain features related to

various senses, features with high weights tend to belong to the target sense as the

secondary senses of the averaged words vectors rarely match semantically, hence the

aggregation amplifies the correct sense.

This concludes the description of steps we use to construct PCZs from text

corpora.

4.6 Inducing PCZs with dense vector representations

In this section, we briefly describe alternative routes to the construction of a PCZ

from text in an unsupervised way. In the remainder of this article, we will rely on

the results of the approach described above. The goal of this section is to show that

our overall framework is agnostic to the type of underlying distributional semantic

model. In this section, we consider three approaches to generating a PCZ using word

or sense embeddings.

Option 1: Inducing PCZs using word embeddings with explicit disambiguation. As

illustrated in Figure 1, the first stage of our approach involves the computation

of a graph of semantically similar words. Above, the graph was induced using a

count-based model, however, any of the models listed in Table 2 can be used to

generate such a graph of ambiguous words including models based on dense vector

representations, such as the Skip-gram model. In this strategy, one would need to

generate top nearest neighbors of word on the basis of cosine similarity between

word embeddings. Table 3 shows an excerpt of nearest neighbors generated using the

JoBimText and word2vec toolkits. The obtained word graphs can be subsequently

used to induce word senses using the graph-based approach described in Section 4.2.

The obtained clusters can be labeled using a database of hypernyms exactly in

the same way as for the models based on the count-based JoBimText framework
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Table 4. A Skip-gram-based PCZ model by Pelevina et al. (2016): Neighbors of the
word mouse and the induced senses

Vector Nearest neighbors

Mouse Rat, keyboard, hamster, hedgehog, monkey, kangaroo, cursor, button

Mouse:0 Rat:0, hamster:0, hedgehog:1, mole:0, monkey:0, kangaroo:0, skunk:0

Mouse:1 Cursor:0, keyboard:1, AltGr:0, chording:1, D-pad:0, button:0

The neighbors of the initial vector belong to both senses, while those of sense vectors are

sense specific.

(cf. Section 4.3). All further steps of the workflow presented in Figure 1 remain the

same.

The main difference between the approach described above and the methods

based on dense representations of words is the representation of the context clues of

PCZ (cf. Table 1). In the case of an underlying sparse count-based representation,

context clues remain human readable and interpretable, whereas in case of dense

representations, context clues are represented by a dense vector embedding, and it

is not straightforward to aggregate context clues over sense clusters.

Option 2: Inducing PCZs using word embeddings without explicit disambiguation.

The first two stages of this approach are the same compared to the previous

strategy. Namely, first one needs to generate a graph of ambiguous semantically

related words (Section 4.1) and then to run ego-network clustering to induce word

senses (Section 4.2). However, instead of explicit disambiguation of nearest neighbors

(Section 4.4), the third stage could obtain vector sense representations by averaging

the word embeddings of sense clusters (Section 4.5). Finally, disambiguated nearest

neighbors can be obtained by calculating nearest neighbors of each sense vector in

the space of word sense embeddings. This step is equivalent to the computation of

a DT (Section 4.1); however, it directly yields disambiguated nearest neighbors (cf.

Table 4). Note, however that, disambiguation of hypernyms using Algorithm 1 is

still required when using this approach.

This approach was explored in our previous work (Pelevina et al. 2016), where we

showed that words sense embeddings obtained in this way can be successfully used

for unsupervised WSD, yielding results comparable to the state of the art.

Option 3: Inducing PCZ using word sense embeddings. Finally, a PCZ can be also

induced using sparse (Reisinger and Mooney 2010) and dense (Neelakantan et al.

2014; Li and Jurafsky 2015; Bartunov et al. 2016) multi-prototype vector space

models (the latter are also known as word sense embeddings). These models directly

induce sense vectors from a text corpus, not requiring the word sense induction

step of our method (Section 4.2). Instead of ego-network-based sense induction,

these methods rely on some form of context clustering, maintaining several vector

representations for each word type during training. To construct a PCZ using such

models within our framework, we need to compute a list of nearest neighbors

(Section 4.1), label the obtained sense clusters with hypernyms (Section 4.3) and
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16 C. Biemann et al.

Algorithm 2 Linking induced senses to senses of a lexical resource

Require: T = {(ji, Rji , Hji )}, W , th, m
Ensure: M = (source, target)
1: M = ∅
2: for all (ji, Rji , Hji ) ∈ T .monosemousSenses do
3: C(ji) = W.getSenses(ji.lemma, ji.POS )
4: if |C(ji)| == 1, let C(ji) = {c0} then
5: if sim(ji, c0, ∅) ≥ th then
6: M = M ∪ {(ji, c0)}
7: for step = 1; step ≤ m ; step = step + 1 do
8: Mstep = ∅
9: for all (ji, Rji , Hji ) ∈ T .senses/M.senses do

10: C(ji) = W.getSenses(ji.lemma, ji.POS )
11: for all ck ∈ C(ji) do
12: rank(ck) = sim(ji, ck,M)
13: if rank(ck) has a single top value for ct then
14: if rank(ct) ≥ th then
15: Mstep = Mstep ∪ {(ji, ct)}
16: M = M ∪ Mstep

17: for all (ji, Rji , Hji ) ∈ T .senses/M.senses do
18: M = M ∪ {(ji, ji)}
19: return M

disambiguate these hypernyms using Algorithm 1. The sense vectors replace the

aggregated context clues, so the stage described in Section 4.5 is superfluous for this

option as well.

We also experimented in previous work with the construction of PCZs using this

approach (Panchenko 2016), showing how to use sense embeddings for building

PCZs, reaching satisfactory levels of recall and precision of matching as compared

to a mapping defined by human judges.

While an empirical comparison of these options would be interesting, it is beyond

the scope of this paper, where our main point is to demonstrate the benefits of

linking manually created LRs with models induced by distributional semantics (by

example of a count-based model).

5 Linking a proto-conceptualization to a lexical semantic resource

This section describes how a corpus-induced semantic network (a PCZ) is linked to

a manually created semantic network, represented by an LR.

5.1 Linking induced senses to senses of the lexical resource

Now, we link each sense in our PCZ to the most suitable sense (if any) of an

LR (see Figure 1 step 3). There exist many algorithms for knowledge base linking

(Pavel and Euzenat 2013); here, we build upon simple, yet high-performing previous

approaches to linking LRs that achieved state-of-the-art performance. These rely

at their core on computing the overlap between the bags of words built from

the LRs’ concept lexicalizations, e.g. Navigli and Ponzetto (2012a) and Gurevych

et al. (2012) (inter alia). Specifically, we develop (i) an iterative approach – so

that the linking can benefit from the availability of linked senses from previous
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iterations – (ii) leveraging the lexical content of the source and target resources.

Algorithm 2 takes as input

(1) a PCZ T = {(ji, Rji , Hji)} where ji is a sense identifier (i.e. mouse:1), Rji the set

of its semantically related senses (i.e. Rji = {keyboard:1, computer:0, . . . } and

Hji the set of its hypernym senses (i.e. Hji = {equipment:3, . . . };
(2) an LR W : we experiment with: WordNet, a lexical database for English and

BabelNet, a very large multilingual ‘encyclopedic dictionary’;

(3) a threshold th over the similarity between pairs of concepts and a number m of

iterations as a stopping criterion.

The algorithm outputs a mapping M, which consists of a set of pairs of the

kind (source, target) where source ∈ T .senses is a sense of the input PCZ T and

target ∈ W.senses ∪ source is the most suitable sense of W or source when no such

sense has been identified.

The algorithm starts by creating an empty mapping M (line 1). Then for each

monosemous sense (e.g. Einstein:0 is the only sense in the PCZ for the term Einstein)

it searches for a candidate monosemous sense (lines 2–6). If such monosemous

candidate senses exist (line 4), we compare the two senses (line 5) with the following

similarity function:

sim(j, c,M) =
|T .BoW (j,M,W ) ∩ W.BoW (c)|

|T .BoW (j,M,W )| , (3)

where

(1) T .BoW (j,M,W ) is the set of words containing all the terms extracted from

related/hypernym senses of j and all the terms extracted from the related/

hypernym (i.e. already linked in M) synsets in W. For each synset from the LR,

we use all synonyms and content words of the gloss.

(2) W.BoW (c) contains the synonyms and the gloss content words for the synset c

and all the related synsets of c.

Then a new link pair (ji, c0) is added to M if the similarity score between ji and

c0 meets or exceeds the threshold th (line 5). At this point, we collected a first set

of disambiguated (monosemous) senses in M and start to iteratively disambiguate

the remaining (polysemous) senses in T (lines 7–16). This iterative disambiguation

process is similar to the one we described for the monosemous case (lines 2–6), with

the main difference that, due to the polysemy of the candidates synsets, we instead

use the similarity function to rank all candidate senses (lines 11–12) and select the

top-ranked candidates for the mapping (lines 13–15). At the end of each iteration,

we add all collected pairs to M (line 16). Finally, all unlinked j of T , i.e. induced

senses that have no corresponding LR sense, are added to the mapping M (lines

17–18).

Comparison with other mapping algorithms. Previous work for the construction of

BabelNet (Navigli and Ponzetto 2012a) and UBY (Gurevych et al. 2012) looked

at the related problem of matching heterogeneous lexical semantic resources, i.e.

Wikipedia and WordNet. In our scenario, however, we aim instead at establishing
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Algorithm 3 Typing of the unmapped induced senses

Require: M = (source, target), W
Ensure: H = (source, type)
1: H = ∅
2: for all (source, target) ∈ M do
3: if target /∈ W then
4: Rank = 0
5: for all related ∈ Rsource, ∃(related, trelated) ∈ M, trelated ∈ W do
6: for all hop ∈ (1, 2, 3) do
7: for all ancestor ∈ W.ancestors(trelated, hop) do
8: Rank(ancestor) = Rank(ancestor) + 1.0/hop
9: for all ntype ∈ Rank.top(toph) do

10: H = H ∪ (source, ntype)
11: return H

a bridge between any of these latter reference KBs and a PCZ – i.e. a fully

disambiguated distributional semantic representation of distributionally induced

word senses (cf. Section 4.5). Since we are working with a PCZ on the source side,

as opposed to using Wikipedia, we cannot rely on graph-based algorithms such

as PageRank (Niemann and Gurevych 2011) ‘out of the box’: while PCZs can be

viewed as graphs, these are inherently noisy and require cleaning techniques in order

to remove cycles and wrong relations (cf. Section 7 where we accordingly address

the topic of taxonomy induction and cleaning within our framework). Similarly,

the fact that PCZs are automatically induced from text – and hence potentially

noisier that clean collaboratively generated content from Wikipedia – forces us to

limit evidence for generating the mapping to local information, as opposed to, e.g.

graph-based expansions used to boost the recall of BabelNet–WordNet mappings,

cf. Navigli and Ponzetto (2012a). To overcome this ‘locality’ constraint, we develop

an iterative approach to indirectly include non-local evidence based on previous

mapping decisions. Our algorithm, in fact, uses previous mappings to additionally

expand the bag-of-word of the candidate PCZ sense to be mapped, based on

related/hypernym synsets linked in the previous iterations only (i.e. to keep the

expansion ‘safe’, cf. Equation (3)).

5.2 Typing of the unmapped induced senses

An approach based on the bag-of-words from concept lexicalizations has the

advantage of being simple, as well as high performing as we show later in the

evaluation – cf. also findings from Navigli and Ponzetto (2012a). However, there

could be still PCZ senses that cannot be mapped to the target LR, e.g. because of

vocabulary mismatches, sparse concepts’ lexicalizations, or because they are simply

absent in the resource.

Consequently, in the last phase of our resource creation pipeline, we link these

‘orphan’ PCZ senses (i.e. those from lines 17–18 of Algorithm 2), in order to obtain a

unified resource, and propose a method to infer the type of those concepts that were

not linked to the target LR. For example, so far we were not able to find a BabelNet

sense for the PCZ item Roddenberry:10 (the author of ‘Star Trek’). However, by

looking at the linked related concepts that share the same BabelNet hypernym – e.g.

the PCZ items Asimov:3 is-a authorBabelNet , Tolkien:7 is-a authorBabelNet , Heinlein:8
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Table 5. Text corpora used in our experiments to induce distributional disambiguated
semantic networks (proto-conceptualizations, PCZs)

Name Language Source of texts Genre Size

Wiki English Text of Wikipedia articles Encyclopedic 35 million sent.

News English News articles: Gigaword Narrative, publicistic 105 million sent.

and LCC

is-a authorBabelNet , etc. – we can infer that Roddenberry:10 is-a author:1, since the

latter was linked to the Babel synset authorBabelNet .

The input of Algorithm 3 consist of the mapping M of a PCZ to an LR W

(cf. Algorithm 2). The output is a new mapping H containing pairs of the kind

(source, type) where type is a type in W for the concept source ∈ PCZ . We first

initialize the new mapping H as an empty set (line 1). Then for all the pairs

(source, target) where the target is a concept not included in the target LR W

(line 3), we compute a rank of all the ancestors of each related sense that has a

counterpart trelated in W (lines 5–8). In other words, starting from linked related

senses trelated, we traverse the taxonomy hierarchy (at most for three hops) in W

and each time we encounter a sense ancestor we increment its rank by the inverse

of the distance to trelated. Finally, we add the pairs (source, ntype) to H for all the

ntype at the top toph in the Rank.

Finally, our final resource consists of (i) the PCZ; (ii) the mapping M of PCZ

entries to the LR (e.g. WordNet or BabelNet); (iii) the mapping H of suggested

types for the PCZ entries not mapped in M.

6 Experiments

In this section, we present results of four experiments, which intrinsically and

extrinsically evaluate the quality of our HAR.

6.1 Corpora used for the induction of proto-conceptualizations

We evaluate our method using texts of different genres, namely standard newswire

text vs. encyclopedic texts in order to examine performance in different settings. The

corpora, described in Table 5, are a 105 million sentence news corpus composed of

Gigaword (Parker et al. 2011) and the Leipzig Corpora Collection, (Richter et al.

2006)7 and a 35 million-sentence Wikipedia corpus8 from a 2011 dump.

We opt for these text collections because they were previously extensively used

for the evaluation of distributional models based on the JoBimText framework

(Biemann and Riedl 2013; Riedl and Biemann 2013). Specifically, previous work

(Riedl and Biemann 2013) experimented with the induction of distributional models

7 http://corpora.uni-leipzig.de
8 The wiki corpus is downloadable (cf. Section 8). The news corpus is available by request

due to license restrictions of the Gigaword corpus.
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Table 6. Structural analysis of our five word sense inventories of the
proto-conceptualizations (PCZs) used in our experiments

Words Senses Polysemy Rel.senses Hyper.

PCZ n # Mono Poly # Avg. Max # Avg. # Avg.

News-p1.6 200 207 k 137 k 69 k 332 k 1.6 18 234 k 63.9 15 k 6.9

News-p2.3 50 200 k 99 k 101 k 461 k 2.3 17 298 k 44.3 15 k 5.8

Wiki-p1.8 200 206 k 120 k 86 k 368 k 1.8 15 300 k 59.3 15 k 4.4

Wiki-p6.0 30 258 k 44 k 213 k 1.5 M 6.0 36 811 k 16.9 52 k 1.7

Wiki-p1.6-mwe 200 465 k 288 k 176 k 765 k 1.6 13 662 k 46.6 30 k 3.2

Fig. 4. (Colour online) Extraction of distributional dependency features for

a multiword expression Mickey Mouse: all outgoing dependencies are used

as features. This image was created using the Stanford dependency visualizer

(http://nlp.stanford.edu:8080/corenlp).

on the basis of both corpora, and showed that the quality of semantic similarity

(which, in turn, is used to build the DT, cf. Section 4.1) increases with corpus size.

Since ‘more data’ helps, we experiment in this work with the full-sized corpora.

Further description of the wiki and news text collections can be found in Riedl and

Biemann (2013) and Riedl (2016, p. 94).

We experiment with different parameterizations of the sense induction algorithm

to obtain PCZs with different average sense granularities, since a priori, there is no

clear evidence for what the ‘right’ sense granularity of a sense inventory should be.

Chinese Whispers sense clustering with the default parameters (n = 200) produced

an average number of 2.3 (news) and 1.8 (wiki) senses per word with the usual

power-law distribution of sense cluster sizes. Decreasing connectivity of the ego

network via the n parameter leads to more fine-grained inventories (cf. Table 6).

Finally, we use the method described in Riedl and Biemann (2015) to compute a

dataset that includes automatically extracted multiword terms using the Wikipedia

corpus (wiki-p1.6-mwe). Since most of the multiwords are monosemous, average

polysemy of this dataset decreased from 1.8 to 1.6 for the analogous model without

multiwords (wiki-p1.8 ). To obtain a feature representation of a multiword expression,

we gathered all outgoing dependency relations of this term as illustrated in Figure 4.

In Table 6, we present statistics for the five different resources we induce from

our corpora. For each dataset, we report the counts of overall number of words

(vocabulary size), including monosemous words and polysemous ones, respectively.

For each PCZ, we report the cardinality, the average polysemy and the maximum

polysemy. Finally, we report the overall and the average number of related senses
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and hypernyms. Numbers vary across datasets due to the different nature of the two

source corpora and the selection of different parameter values for sense induction.

While inducing senses directly from corpus data allows for large coverage and

flexibility, it also makes it difficult to evaluate the quality of the resulting sense

clusters (Agirre and Soroa 2007). Since we do not a priori know the sense granularity

of the PCZs, the sense inventory input to our disambiguation and linking algorithms

cannot be fixed in advance, e.g. in order to produce a static gold standard. Therefore,

in our intrinsic evaluations (Sections 6.2–6.4), we assess the quality of our resources

by manually validating a sample of the output of the different steps of our method.

Later, in Section 6.5, we perform an extrinsic evaluation against a gold standard on

a WSD benchmarking dataset from a SemEval task.

The PCZ described above were subsequently linked to WordNet 3.1 and BabelNet

2.5 using the method described above. All the models described above as well as

the induced sense inventories and word similarity graphs can be accessed online

(cf. Section 8).

6.2 Experiment 1: Quality of disambiguation of the related terms

Experimental setting. In this experiment, we evaluate the quality of Algorithm 1

for the disambiguation of related words (cf. Table 1) by performing a post-hoc

evaluation using manual judgments on a sample of sense-disambiguated terms from

one of our PCZ resources.

We manually selected a set of frequent nouns and proper nouns, such that

each word has least two homonymous (as opposed to polysemous) word senses.

We deliberately avoided words with polysemous senses, as word sense induction

algorithms are known to robustly extract mostly coarse-grained inventories of

homonymous words (Di Marco and Navigli 2013; Cecchini et al. 2017). The words

were selected according to two criteria. First, each of the two homonymous word

senses should have a comparable frequency – compare, for instance, the fairly

common senses of python (animal) and python (language), as opposed to boa

(animal) and boa (language), where the ‘language’ sense of the word boa is much

rarer as compared to its ‘animal’ sense. Second, each of these senses should be

common enough to be recognizable without the need of consulting a dictionary by

a non-native, graduate-level speaker of English. We tested for sense frequencies and

popularity by checking that selected senses were found among the top ones as listed

in BabelNet. Using these criteria, we manually selected a set of seventeen nouns,

such as apple, java, python, etc.9

Since our resources only partially overlap in terms of sense inventory, and there

is no a priori reference sense granularity, we cannot perform evaluation on a shared

9 The full list of words, where senses are denoted in the brackets using
the respective hypernyms: apache (tribe|software), apple (fruit|company), bank
(river|institution), commercial (ad|business), corvette (car|ship), jaguar (animal|car), java
(island|technology), lotus (flower|car), mustang (horse|car), pascal (person|language),
port (sea-related|computer-related), puma (animal|brand), python (snake|language), ruby
(gem|language), sun (star|company), tiger (animal|tank) and viper (snake|car).
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Table 7. Accuracy of Algorithm 1 for disambiguation of related words evaluated on
a set of seventeen frequent words each having two non-marginal homonymous word
senses, e.g. as in mouse (keyboard) and mouse (animal)

Part of speech # Word forms # Senses # Contexts Accuracy

Nouns 15 30 1,055 0.94

Proper nouns 17 49 1,177 0.85

Adjectives 6 6 5,66 0.63

Verbs 4 6 86 0.76

All 42 91 2,284 0.84

gold standard. Consequently, we opt instead for a post-hoc evaluation of the accuracy

of the disambiguation step, namely the fraction of correctly disambiguated related

words among all disambiguated words. Post-hoc validations have major limitations

in that they are time consuming, do not scale and hinder direct comparability across

methods – nevertheless, they are commonly used in the field of knowledge acquisition

to estimate the quality of knowledge resources (Banko et al. 2007; Suchanek et al.

2008; Carlson et al. 2010; Velardi, Faralli and Navigli 2013) (inter alia).

We performed manual validation as follows. We first collected all disambiguated

entries of the wiki-p1.6 model (cf. Table 1), where these seventeen target words appear

and randomly sampled 15% of these entries to make annotation feasible, resulting in

a dataset of 2,884 ambiguous-related words in context. We restrict evaluation to the

wiki-p1.6 model for two reasons: an encyclopedic source is expected to provide better

sense coverage a priori, thus providing us with more evaluation instances, while a

low number of clusters is in line with findings that graph-based sense induction

methods can produce rather coarse high-quality clusterings (Cecchini et al. 2017).

Table 7 presents statistics of our dataset: note that we gathered word senses of all

parts of speech that correspond to the selected seventeen words, including verbs and

adjectives, for the sake of completeness of our study. An annotator with previous ex-

perience in lexicographic annotation performed the judgment of the 2,884 contexts in

a curated way (using several rounds of feedback on random samples of annotations).

The annotator was presented with a table containing four columns: (i) the target

word, (ii) a sense cluster defining the sense of the target word, (iii) a sense cluster

that defines the context of the target word. The last column collected the binary

answer on the question whether the ‘definition’ cluster is semantically compatible

with the ‘context’ cluster. Table 8 illustrates two examples of semantically compatible

and incompatible clusters. The reasons of incompatibility of sense clusters are either

the absence of obvious semantic relations between the words in the clusters (cf. the

‘planet’ vs. ‘basketball’ sense of sun) or simply incoherence of one or both sense

clusters – i.e. the case when the annotator cannot figure out the meaning of the sense

denoted by a cluster, such as the case for the context cluster of tiger. The annotator

was instructed to consider a sense cluster to be interpretable if it was possible to

grasp a dominant meaning by looking at the top twenty words, while allowing for a

small fraction of spurious terms (since sense clusters are automatically generated).
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Table 8. Examples provided to the assessor participating in the study with correct
judgments

Word Sense “Definition” Sense “Context” Related

Java

UNIX, Linux, Symbian, Unix,

OS, Android, Mobile, Solaris,

MS-DOS, Windows, iOS

screen, I/O, multiprocessor, IDE,

repository, pak, Blu-ray, Graph-

ics, Video, Itanium, ...

Yes

Python

hamster, lemurs, turtle, con-

strictor, lizard, orca, rhinoceros,

cobra, ...

turtle, breeds, cattle, breed, cobra,

Bulbul, Kingfisher, Mammals,

starling, ...

Yes

Sun

Hearth, mirror, orb, soil, star,

spotlight, temperature, water,

solstice, burst, ...

eel, brave, Celtics, Wrangler,

rockies, Chargers, Expos, Cava-

liers, Cougars, padre, ...

No

Tiger

Macaque, deer, rhinoceros, Fal-

con, mascot, Whale, Gibbon,

Hyena, boar, deer, ...

Nighthawk, Cessna, F-16, Vali-

ant, Corsair, Maurer, Mirage,

Reaper, Scorpion, ...

No

The subject was asked to determine if the first sense cluster (representing a sense definition of

the ambiguous-related word) is semantically related to the second sense cluster (representing

the context of the ambiguous-related word).

Results and discussion. The results of the experiment are summarized in Table 7.10

Performance of the disambiguation procedure for the proper names and nouns ranges

from 0.85 to 0.94, thus indicating an overall high quality of the procedure. Note that

the word senses of adjectives and verbs are mostly the result of part-of-speech tagging

errors, since in the seed set of seventeen words, we added only nouns and proper

nouns. Wrongly tagged words have in general more noisy, uninterpretable clusters.

To better understand the amount of spurious items in our sense clusters, we per-

formed an additional manual evaluation where, for a sample of hundred randomly

sampled noun PCZ items, we counted the ratio between wrong (e.g. rat for the

computer sense of mouse) and correct (keyboard, computer, etc.) related sense that

were found within the PCZs. We obtained a macro average of 0.0495 and a micro

average of 0.0385 wrongly related senses within the PCZs. Moreover, eighty-three

per cent of the above sample has no unrelated senses, and only two per cent have

only a single unrelated sense with a macro average ratio between the wrong and

correct related PCZs of 0.067. This indicates that, overall, the amount of spurious

senses within clusters is indeed small, thus providing a high-quality context for an

accurate disambiguation of noun DT clusters.

6.3 Experiment 2: Linking induced senses to lexical resources

Experimental setting. In this experiment, we evaluate the performance of our

linking component (Section 5.1). For this, we choose two lexical-semantic networks:

10 The judgments are available for download (cf. Section 8).
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WordNet (Fellbaum 1998), which has a high coverage on English common nouns,

verbs and adjectives, and BabelNet (Navigli and Ponzetto 2012a), which also includes

a large amount of proper nouns and senses gathered from multiple other sources,

including Wikipedia.

We follow standard practices, e.g. Navigli and Ponzetto (2012a), and create five

evaluation test sets, one for each dataset from Section 6.1, by randomly selecting

a subset of 300 induced word senses for each dataset, and manually establishing a

mapping from these senses to WordNet and BabelNet senses (senses that cannot be

mapped are labeled as such in the gold standard).

We compare against the following two most frequent sense (MFS) baselines, which

select from all the possible senses for a given term t:

(1) The MFS in WordNet, where frequencies of senses are observed on a manually

annotated semantic concordance (Miller et al. 1993).

(2) The MFS in BabelNet. Since BabelNet combines WordNet and Wikipedia, this

amounts to (i) the WordNet MFS for senses originally found in WordNet and

(ii) the most cited (i.e. internally hyperlinked) Wikipedia page for senses derived

from Wikipedia.

The quality and correctness of the mapping is estimated as accuracy on the ground-

truth judgments, namely the amount of true mapping decisions among the total

number of (potentially, empty) mappings in the gold standard. Each pair (j, c)

in a mapping M created with Algorithm 2 is evaluated as (i) true positive (TP )

when c is the most suitable sense in the LR for the induced word sense j; (ii)

true negative (TN) when c refers to j itself and there are no senses in the LR

to capture the meaning expressed by j; (iii) false positive (FP ) when c is not the

most suitable sense in the LR for the sense t; (iv) false negative (FN) when c

refers to j itself and there is a sense in the LR that captures the same meaning

of j.

We also evaluate our mapping by quantifying coverage and extra-coverage on the

reference resource:

Coverage(A,B) =
|A ∩ B|

|B| ExtraCoverage(A,B) =
|A/B|

|B| (4)

where A is the set of LR synsets or induced word senses mapped in M using

Algorithm 2, and B is the whole set of LR synsets. That is, Coverage indicates

the percentage of senses of the LR sense inventory covered by the mapping M,

whereas ExtraCoverage indicates the ratio of senses in M not linked to the LR

sense inventory over the total number of senses in an LR. That is, ExtraCoverage

is a measure of novelty to quantify the amount of senses discovered in T and not

represented by the LR: it indicates the amount of ‘added’ knowledge we gain with

our resource based on the amount of senses that cannot be mapped and are thus

included as novel senses.
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Table 9. Results on linking to lexical semantic resource: number of linked induced word
senses, Coverage, ExtraCoverage, accuracy of our method and of the MFS baseline for
our five datasets

WordNet-linked

PCZ #linked senses Cov. ExtraCov. Accuracy MFS baseline

News-p1.6 88 k 34.5% 206.0% 86.9% 85.5%

News-p2.3 145 k 38.2% 267.0% 93.3% 85.0%

Wiki-p1.8 91 k 35.9% 234.7% 94.8% 80.5%

Wiki-p6.0 400 k 49.9% 919.9% 93.5% 74.2%

Wiki-mw-p1.6 81 k 30.7% 581.2% 95.3% 89.7%

BabelNet-linked

# linked senses Cov. ExtraCov. Accuracy MFS baseline

News-p1.6 164 k 1.3% 2.9% 81.8% 52.3%

News-p2.3 236 k 1.4% 3.9% 85.1% 57.2%

Wiki-p1.8 232 k 1.9% 2.4% 86.4% 41.0%

Wiki-p6.0 737 k 2.8% 1.3% 82.2% 54.7%

Wiki-mw-p1.6 589 k 4.7% 1.8% 83.8% 59.4%

Results and discussion. In Table 9, we present the results using the optimal parameter

values (i.e. th = 0.0 and m = 5 of Algorithm 2).11 For all datasets, the number of

linked senses, Coverage and ExtraCoverage are directly proportional to the number

of entries in the dataset – i.e. the finer the sense granularity, as given by a lower

sense clustering n parameter, the lower the number of mapped senses, Coverage and

ExtraCoverage.

In general, we report rather low coverage figures: the coverage in WordNet

is always lower than fifty per cent (thirty per cent in one setting) and coverage

in BabelNet is in all settings lower than five per cent. Low coverage is due to

different levels of granularities between the source and target resource. Our target

LRs, in fact, have very fine-grained sense inventories. For instance, BabelNet lists

seventeen senses of the word python including two (arguably obscure ones) referring

to particular roller coasters. In contrast, word senses induced from text corpora tend

to be coarse and corpus specific. Consequently, the low coverage comes from the

fact that we connect a coarse and a fine-grained sense inventory – cf. also previous

work (Faralli and Navigli 2013) showing comparable proportions between coverage

and extra-coverage of automatically acquired knowledge (i.e. glosses) from corpora.

Finally, our results indicate differences between the order of magnitude of the

Coverage and ExtraCoverage when linking to WordNet and BabelNet. This high

difference is rooted in the cardinality of the two sense inventories, whereas BabelNet

encompasses millions of senses, WordNet contains hundreds of thousands – many

11 To optimize m, we prototyped our approach on a dev set consisting of a random sample
of 300 senses, and studied the curves for the number of linked induced senses to WordNet
resp. BabelNet. The th value was then selected as to maximize the accuracy.
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of them not covered in our corpora. Please note that an ExtraCoverage of about

three per cent in BabelNet corresponds to about 300k novel senses. Overall, we

take our results to be promising in that, despite the relative simplicity of our

approach (i.e. almost parameter-free unsupervised linking), we are able to reach

high accuracy figures in the range of around 87–95 per cent for WordNet and

accuracies consistently above eighty per cent for BabelNet. This compares well

against a random linking baseline that is able to achieve 44.2 per cent and 40.6 per

cent accuracy on average when mapping to WordNet and BabelNet, respectively.

Also, we consistently outperform the strong performance exhibited by the MFS

baselines, which, in line with previous findings on similar tasks (Suchanek et al.

2008; Ponzetto and Navigli 2009) provide a hard-to-beat competitor. Thanks to our

method, in fact, we are able to achieve an accuracy improvement over the MFS

baseline ranging from 1.4 per cent to 14.3 per cent on WordNet mappings, and

from 24.4 per cent to 45.4 per cent on BabelNet. Despite not being comparable, our

accuracy figures are in the same ballpark as those reported by Navigli and Ponzetto

(2012a) (cf. Table 1), who use a similar method for linking Wikipedia to WordNet.

Error analysis. To gain insights into the performance of our approach, as well as

its limitations, we performed a manual error analysis of the output on the WordNet

mappings, identifying a variety of sources of errors that impact the quality of the

output resource. These include

• part-of-speech tagging errors, which may produce wrong senses such as non-

existent ‘verbs’ (e.g. tortilla:VB) (about ten per cent of the errors);

• Hearst patterns errors that may extract wrong hypernyms such as issue for

the entry emotionalism (about twenty per cent of the errors);

• linking errors where the accuracy strongly depends on the granularity of

senses and relationships of the target LR (about seventy per cent of the

errors).

More specifically, false positives are often caused by the selection of a synset that

is slightly different from the most suitable one (i.e. semantic shift), whereas false

negatives typically occur due to the lack of connectivity in the semantic network.

Even if the high values of the estimated accuracy (see Table 9) of our mapping

approach indicate that we are generally performing well over all the classes of

test examples (i.e. true positive, true negative, false positive and false negative), the

performance figures exhibit a different order of magnitude between the count of

true positives and true negatives. True negatives are senses in the ExtraCoverage

that we estimate to be correct new senses not contained in the reference LR. For a

sample of such senses, we performed an additional manual analysis, and identified

the following reasons that explain our generally high ExtraCoverage scores:

• Named entities and domain-specific senses (about forty per cent of the true

negatives): true negative senses are due to correct new senses not contained

in the target LR. This holds in particular for WordNet, where encyclopedic

content occurs in a spotty fashion in the form of a few examples for some

classes.
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Table 10. Statistics and performance on typing unmapped PCZ items: number of
induced senses counting for ExtraCoverage, number of typed and untyped induced
senses, accuracy of our method and accuracy of the MFS baseline for our five datasets

WordNet-linked

PCZ #extra senses w types w/o types Accuracy MFS baseline

News-p1.6 244 k 184 k 59 k 83.3% 80.7%

News-p2.3 316 k 226 k 90 k 91.4% 89.5%

Wiki-p1.8 277 k 225 k 51 k 89.2% 89.0%

Wiki-p6.0 1 M 675 k 487 k 81.2% 78.2%

Wiki-p1.6-mwe 683 k 538 k 144 K 78.8% 77.3%

BabelNet-linked

PCZ #extra senses w types w/o types Accuracy MFS baseline

News-p1.6 168 k 73 k 95 k 91.2% 87.2%

News-p2.3 225 k 89 k 135 k 90.3% 89.8%

Wiki-p1.8 208 k 143 k 65 k 87.2% 85.0%

Wiki-p6.0 1,4 M 278 k 1.1 M 41.2% 40.3%

Wiki-p1.6-mwe 552 k 342 k 209 k 89.6% 88.0%

• Sense granularity misalignment (about sixty per cent of the true negatives):

true negatives that derive from excessively fine clustering, and should have

been combined with other senses to represent a more generic sense.

6.4 Experiment 3: Typing of the unmapped induced senses

Experimental setting. The high ExtraCoverage rates from Section 6.3 show that our

resource contains a large number of senses that are not contained in existing LRs

such as WordNet and BabelNet. Besides, high accuracy scores in the evaluation of

the quality of the sense clusters from Section 6.2 seem to indicate that such extra

items are, in fact, of high quality. Crucially, for our purposes, information found

among the extra coverage has enormous potential, e.g. to go beyond ‘Wikipedia-

only’ sense spaces. Consequently, we next evaluate our semantic typing component

(Section 5.2) to assess the quality of our method to include also these good extra

clusters that, however, have no perfect mapping in the reference LR (WordNet,

BabelNet).

Similarly to the experiments for the resource mapping (Section 6.3), we manually

create five test sets, one for each dataset from Section 6.1, by randomly selecting 300

unmapped PCZ items for each dataset, and manually identifying the most appro-

priate type of each induced sense among WordNet or BabelNet senses. Given these

gold standards, performance is then computed as standard accuracy on each dataset.

Results and discussion. In Table 10, we report the statistics and the estimated

accuracy for the task of typing the previously unmapped senses found among
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the ExtraCoverage. For each dataset and LR, we report the number of senses in the

ExtraCoverage, the number of senses for which we inferred the type, the number of

senses for which we were not able to compute a type, and the estimated accuracy

for the types inferred by our method on the basis of either the links generated using

our approach from Section 5.1, or those created using the MFS linking baseline.

The results show that accuracy decreases for those datasets with higher polysemy.

In particular, we obtain a low accuracy of 41.2 per cent for the ‘wiki-p6.0’ where

the disambiguated thesaurus contains only a low number of related senses, resulting

in sparsity issues. For the other settings, the accuracy ranges from 78.8 per cent to

91.4 per cent (WordNet) and from 87.2 per cent to 91.2 per cent (BabelNet). The

MFS baseline accuracies of typing the unmapped induced senses (see Section 6.3)

are lower, scoring 0.2 per cent to 2.7 per cent less accuracy for WordNet and 0.5

per cent to 4.2 per cent less accuracy for BabelNet: these results corroborate the

previous ones on linking, where the MFS was shown to be a tough baseline. Besides,

the higher performance figures achieved by the MFS on typing when compared to

linking indicate that the typing task has a lower degree of difficulty in the respect

that popular (i.e. frequent) types provide generally good type recommendations.

6.5 Experiment 4: Evaluation of enriched lexical semantic resources

Experimental setting. In our next experiment, we follow previous work (Navigli and

Ponzetto 2012a) and benchmark the quality of our resources by making use of the

evaluation framework provided by the SemEval-2007 task 16 (Cuadros and Rigau

2007) on the ‘Evaluation of wide-coverage knowledge resources’. This SemEval task

is meant to provide an evaluation benchmark to assess wide-coverage LRs on the

basis of a traditional lexical understanding task, namely WSD (Navigli 2009). The

evaluation framework consists of the following two main phases:

(1) Generation of sense representations. From each LR, sense representations, also

known as ‘topic signatures’, are generated, which are sets of terms that are

taken to be highly correlated with a set of target senses. In practice, a sense

representation consists of a weighted vector, where each element corresponds to

a term that is deemed to be related to the sense, and the corresponding weight

quantifies its strength of association.

(2) WSD evaluation. Next, sense representations are used as weighted bags of words

in order to perform monolingual WSD using a Lesk-like method (cf. Lesk 1986)

applied to standard lexical sample datasets. Given a target word in context and

the sense representations for each of the target word’s senses, the WSD algorithm

selects the sense with the highest lexical overlap (i.e. the largest number of words

in common) between the sense representation and the target word’s textual

context.

This SemEval benchmark utilizes performance on the WSD task as an indicator of

the quality of the employed LR. This approach makes it possible to extrinsically

compare the quality of different knowledge resources, while making as few assump-

tions as possible over their specific properties – this is because knowledge resources
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Table 11. Sample entries of the hybrid aligned resource (HAR) for the words mouse
and keyboard

PCZ ID WordNet ID PCZ related terms PCZ context clues

mouse:0 mouse:wn1 rat:0, rodent:0, monkey:0, ... rat:conj and, gray:amod, ...

mouse:1 mouse:wn4 keyboard:1, computer:0, printer:0 ... click:-prep of, click:-nn, ....

keyboard:0 keyboard:wn1 piano:1, synthesizer:2, organ:0 ... play:-dobj, electric:amod, ..

keyboard:1 keyboard:wn1 keypad:0, mouse:1, screen:1 ... computer, qwerty:amod ...

Trailing numbers indicate sense identifiers. To enrich WordNet sense representations, we rely

on related terms and context clues.

are simply viewed as sense representations, namely weighted bags of words. Besides,

to keep the comparison fair, it uses a common and straightforward disambiguation

strategy (i.e. Lesk-like word overlap) and a knowledge representation formalism

(i.e. sense representations) that is equally shared across all LRs when evaluating

them on the same reference dataset. Specifically, the evaluation is performed on

two lexical sample datasets, from the Senseval-3 (Mihalcea, Chklovski and Kilgarriff

2004) and SemEval-2007 Task 17 (Pradhan et al. 2007) evaluation campaigns. The

first dataset has coarse-grained and fine-grained sense annotations, while the second

contains only fine-grained annotations. In all experiments, we follow the original

task formulation and quantify WSD performance using standard metrics of recall,

precision and balanced F-measure.

Here, we use the SemEval task to benchmark the ‘added value’ in knowledge

applicable for WSD that can be achieved by enriching a standard resource like

WordNet with disambiguated distributional information from our PCZs on the

basis of our linking. To this end, we experiment with different ways of enriching

WordNet-based sense representations with contextual information from our HAR.

For each WordNet sense of a disambiguation target, we first build a ‘core’ sense

representation from the content and structure of WordNet, and then expand it with

different kinds of information that can be collected from the PCZ sense that is

linked to it (cf. Table 11):

• WordNet. The baseline model relies solely on the WordNet LR. It builds a

sense representation for each sense of interest by collecting synonyms and

definition terms from the corresponding WordNet synset, as well as all synsets

directly connected to it (we remove stop words and weigh words with term

frequency).

• WordNet + Related (news). We augment the WordNet-based representation

with related terms from the PCZ. That is, if the WordNet sense is linked to a

corresponding induced sense in our resource, we add all related terms found

in the linked PCZ sense to the sense representation.

• WordNet + Related (news) + Context (news/wiki). Sense representations of

this model are built by taking the previously generated ones, and additionally

including terms obtained from the context clues of either the news (+ Context

(news)) or Wikipedia (+ Context (wiki)) corpora we use (see Section 6.1).
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In the last class of models, we used up to 5,000 most relevant context clues per word

sense. This value was set experimentally: performance of the WSD system gradually

increased with the number of context clues, reaching a plateau at the value of

5,000. During aggregation, we excluded stop words and numbers from context clues.

Besides, we transformed syntactic context clues to terms, stripping the dependency

type, so they can be added to other lexical representations. For instance, the context

clue rat:conj and of the entry mouse:0 was reduced to the feature rat.

Table 12 shows a complete example from our dataset that demonstrate how,

thanks to our HAR, we are able to expand WordNet-based sense representations

with many relevant terms from the related terms of our sense-disambiguated PCZs.

We compare our approach to four state-of-the-art systems: KnowNet (Cuadros

and Rigau 2008), BabelNet, WN+XWN (Cuadros and Rigau 2007) and NASARI.

KnowNet builds sense representations based on snippets retrieved with a web search

engine. We use the best configuration reported in the original paper (KnowNet-20),

which extends each sense with twenty keywords. BabelNet in its core relies on

a mapping of WordNet synsets and Wikipedia articles to obtain enriched sense

representations; here, we consider both original variants used to generate sense

representations, namely collecting all BabelNet synsets that can be reached from the

initial synset at distance one (BabelNet-1) or two (BabelNet-2) and then outputting

all their English lexicalizations. The WN + XWN system is the top-ranked unsuper-

vised knowledge-based system of Senseval-3 and SemEval-2007 datasets from the

original competition (Cuadros and Rigau 2007). It alleviates sparsity by combining

WordNet with the eXtended WordNet (Mihalcea and Moldovan 2001). The latter

resource relies on parsing of WordNet glosses. For all these resources, we use the

scores reported in the respective original publications.

NASARI provides hybrid semantic vector representations for BabelNet synsets,

which are a superset of WordNet. Consequently, we follow a procedure similar to

the one we use to expand WordNet-only sense representations with information

from our PCZs – namely, for each WordNet-based sense representation, we add all

features from the lexical vector of NASARI that corresponds to it.12

Thus, we compare our method to three hybrid systems that induce sense repres-

entations on the basis of WordNet and texts (KnowNet, BabelNet, NASARI) and

one purely knowledge-based system (WN + XWN). Note that we do not include the

supervised TSSEM system in this comparison, as in contrast to all other considered

methods including ours, it relies on a large sense-labeled corpus.

Results and discussion. Table 13 presents results of the evaluation, which generally

indicate the high quality of the sense representations in our HAR. Expanding

WordNet-based sense representations with distributional information provides, in

fact, a clear advantage over the original representation on both Senseval-3 and

SemEval-2007 datasets. Using related words specific (via linking) to a given WordNet

12 We used the version of lexical vectors (July 2016) featuring 4.4 million of BabelNet synsets,
yet covering only seventy two per cent of word senses of the two datasets used in our
experiments.
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Table 12. WordNet-only and PCZ-enriched sense representations for the fourth
WordNet sense of the word disk (i.e. the ‘computer science’ one): the ‘core’ WordNet
sense representation is additionally enriched with related words from our hybrid aligned
resource

Model Sense representation

WordNet-only

memory, device, floppy, disk, hard, disk, disk, computer,

science, computing, diskette, fixed, disk, floppy, magnetic,

disc, magnetic, disk, hard, disc, storage, device

WordNet + Related (wiki)

recorder, disk, floppy, console, diskette, handset, desktop,

iPhone, iPod, HDTV, kit, RAM, Discs, Blu-ray, computer,

GB, microchip, site, cartridge, printer, tv, VCR, Disc,

player, LCD, software, component, camcorder, cellphone,

card, monitor, display, burner, web, stereo, internet, model,

iTunes, turntable, chip, cable, camera, iphone, notebook,

device, server, surface, wafer, page, drive, laptop, screen, pc,

television, hardware, YouTube, dvr, DVD, product, folder,

VCR, radio, phone, circuitry, partition, megabyte, peripheral,

format, machine, tuner, website, merchandise, equipment, gb,

discs, MP3, hard-drive, piece, video, storage device, memory

device, microphone, hd, EP, content, soundtrack, webcam,

system, blade, graphic, microprocessor, collection, document,

programming, battery, keyboard, HD, handheld, CDs, reel,

web, material, hard-disk, ep, chart, debut, configuration,

recording, album, broadcast, download, fixed disk, planet,

pda, microfilm, iPod, videotape, text, cylinder, cpu, canvas,

label, sampler, workstation, electrode, magnetic disc, catheter,

magnetic disk, Video, mobile, cd, song, modem, mouse,

tube, set, ipad, signal, substrate, vinyl, music, clip, pad,

audio, compilation, memory, message, reissue, ram, CD,

subsystem, hdd, touchscreen, electronics, demo, shell, sensor,

file, shelf, processor, cassette, extra, mainframe, motherboard,

floppy disk, lp, tape, version, kilobyte, pacemaker, browser,

Playstation, pager, module, cache, DVD, movie, Windows,

cd-rom, e-book, valve, directory, harddrive, smartphone,

audiotape, technology, hard disk, show, computing, computer

science, Blu-Ray, blu-ray, HDD, HD-DVD, scanner, hard

disc, gadget, booklet, copier, playback, TiVo, controller, filter,

DVDs, gigabyte, paper, mp3, CPU, dvd-r, pipe, cd-r, playlist,

slot, VHS, film, videocassette, interface, adapter, database,

manual, book, channel, changer, storage

sense provides substantial improvements in the results. Further expansion of sense

representations with context clues (cf. Table 1) provides a modest improvement

on the SemEval-2007 dataset only. Consequently, the results seem to indicate that

context clues generally do not provide additional benefits over the expansions

provided from the related terms of the linked PCZ items for task of generating sense

representations.

On the Senseval-3 dataset, our hybrid models show better performance than all

unsupervised knowledge-based approaches considered in our experiment. On the
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Table 13. Comparison of our approach to the state of the art unsupervised
knowledge-based methods on the SemEval-2007 Task 16 (weighted setting)

Senseval-3 SemEval-2007

fine-grained fine-grained

Model Precision Recall F1 Precision Recall F1

Random 19.1 19.1 19.1 27.4 27.4 27.4

WordNet (WN) 29.7 29.7 29.7 44.3 21.0 28.5

WN + Related (news) 47.5 47.5 47.5 54.0 50.0 51.9

WN + Related (news) + Context (news) 47.2 47.2 47.2 54.8 51.2 52.9

WN + Related (news) + Context (wiki) 46.9 46.9 46.9 55.2 51.6 53.4

BabelNet-1 44.3 44.3 44.3 52.2 46.3 49.1

BabelNet-2 35.0 35.0 35.0 56.9 53.1 54.9

KnowNet 44.1 44.1 44.1 49.5 46.1 47.7

NASARI (lexical vectors) 32.3 32.2 32.2 49.3 45.8 47.5

WN + XWN 38.5 38.0 38.3 54.9 51.1 52.9

The best results per section (i.e. the ones using our resources vs. those from the previous

literature) are boldfaced, the best results overall are underlined.

SemEval-2007 dataset instead, we perform on a par, yet slightly below BabelNet’s

best setting. Error analysis of the sense representations suggests that the extra

performance of BabelNet on the SemEval data seems to derive from an aggressive

graph-based expansion technique that leverages semantic relations harvested from

Wikipedias in many languages – cf. the overall lower performance obtained by

collecting sense representations from all Babel synsets at depth 1 only (BabelNet-1)

vs. those that can be reached with two hops (BabelNet-2). This ‘joint multilingual’

approach has also been shown to benefit WSD in general (Navigli and Ponzetto

2012b), and represents an additional source of semantic information not present in

our resource (we leave multilinguality for future work).

The results generally indicate the high quality of our HAR in a downstream

application scenario, where we show competitive results while being much less

resource intensive. This is because our method relies only on a relatively small LR

like WordNet and raw, unlabeled text, as opposed to huge LRs like BabelNet or

KnowNet. That is, while our method shows competitive results better or on a par

with other state-of-the-art systems, it does not require access to web search engines

(KnowNet), the structure and content of a very large collaboratively generated

resource and texts mapped to its sense inventory (BabelNet, NASARI), or even a

machine translation system or multilingual interlinked Wikipedias (BabelNet).

Related work on unsupervised WSD using the induced sense inventory. This article is

focused on the HAR, e.g. a PCZ linked to an LR, as in the knowledge-based WSD

experiment described above. However, the induced sense inventory is a valuable

resource on its own and can be used to perform unsupervised knowledge-free WSD.

In this case, the induced sense representations, featuring context clues, related words
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and hypernyms, are used as features representing the induced senses. In our related

experiments with sparse count-based (Panchenko et al. 2016, 2017c) and dense

prediction-based (Pelevina et al. 2016) distributional models, we show that such

unsupervised knowledge-free disambiguation models yield state-of-the-art results

as compared to the unsupervised systems participated in SemEval 2013 and the

AdaGram (Bartunov et al. 2016) sense embeddings model. An interactive demo that

demonstrates our model developed in these experiments is described in Figure 2 and

in Panchenko et al. (2017b).

7 Applications

Linked distributional disambiguated resources carry a great potential to positively

impact many knowledge-rich scenarios. In this section, we leverage our resource for

a few downstream applications of knowledge acquisition, namely (i) noise removal

in automatically acquired knowledge graphs and (ii) domain taxonomy induction

from scratch.

7.1 Linking knowledge resources helps taxonomy construction

Task definition. We examine a crucial task in learning a taxonomy (i.e. the isa

backbone of a lexical-semantic resource) from scratch (Bordea et al. 2015, 2016),

namely the induction of clean taxonomic structures from noisy hypernym graphs

such as, for instance, those obtained from the extractions of hyponym–hypernym

relations from text. In this task, we are given as input a list of subsumption relations

between terms or, optionally, word senses – e.g. those from our PCZs (Figure 1)

– which can be obtained, for instance, by exploiting lexical-syntactic paths (Hearst

1992; Snow, Jurafsky and Ng 2004), distributional representations of words (Baroni

et al. 2012; Roller, Erk and Boleda 2014) or a combination of both (Shwartz et al.

2016). Due to the automatic acquisition process, such lists typically contain noisy,

inconsistent relations – e.g. multiple inheritances and cycles – which do not conform

to the desired, clean hierarchical structure of a taxonomy. Therefore, the task of

taxonomy construction focuses on bringing order among these extractions, and on

removing noise by organizing them into a directed acyclic graph (Kozareva and

Hovy 2010).

Related work. State-of-the-art algorithms differ by the amount of human supervision

required and their ability to respect some topological properties while pruning the

noise. Approaches like those of Kozareva and Hovy (2010), Velardi et al. (2013) and

Kapanipathi et al. (2014), for instance, apply different topological pruning strategies

that require to specify the root and leaf concept nodes of the KB in advance –

i.e. a predefined set of abstract top-level concepts and lower terminological nodes,

respectively. The approach of Faralli, Stilo and Velardi (2015) avoids the need of

such supervision with an iterative method that uses an efficient variant of topological

sorting (Tarjan 1972) for cycle pruning. Such lack of supervision, however, comes

at the cost of not being able to preserve the original connectivity between the
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Fig. 5. (Colour online) The ContrastMedium (CM) algorithm for taxonomy construction.

top (abstract) and the bottom (instance) concepts. Random edge removal (Faralli

et al. 2015), in fact, can lead to disconnected components, a problem shared with

the OntoLearn Reloaded approach (Velardi et al. 2013), which cannot ensure such

property when used to approximate a solution on a large noisy graph.

ContrastMedium algorithm. Links between heterogeneous knowledge resources, like

those found within our HAR (Section 5), can be leveraged, together with a specialized

algorithm, in order to advance the state of the art in taxonomy construction. To

this end, we use ContrastMedium, a novel algorithm (Faralli et al. 2017) that is

able to extract a clean taxonomy from a noisy knowledge graph without needing

to know in advance – that is, having to manually specify – the top-level and leaf

concepts of the taxonomy, while preserving the overall connectivity of the graph.

ContrastMedium achieves this by projecting the taxonomic structure from a reference

taxonomy (e.g. WordNet or the taxonomic isa backbone of BabelNet) onto a target

(noisy) hypernym graph – for instance, the graph built from the set of hypernym

relations in our HAR (Section 3) – on the basis of links found between the two

resources, e.g. those automatically generated using our method from Section 5.

Metaphorically, in the context of clinical analysis, a contrast medium (CM) is

injected into the human body to highlight specific complex internal body structures

(in general, the cardiovascular system). In a similar fashion, our approach, which is

summarized in Figure 5, starts by detecting the topological structure of the reference

taxonomy by propagating a certain amount of CM that we initially inject through

its root node (step 1). The highlighted structure indicates the distance of a node with

respect to the root, with the lowest values of CM indicating the leaf terminological
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nodes. The observed quantities are then transferred to corresponding nodes of the

target hypernym graph by following the links between the two resources (step 2).

Next, the medium is propagated by ‘shaking’ the noisy graph. We let the fluid reach

all its components by alternating two phases of propagation: letting the CM flow

via both incoming (shake up) and outgoing (shake down) edges (step 3). Finally,

we use the partial order induced by the level of CM observed in each node to drive

the pruning phase, and we ‘stretch’ the linked noisy knowledge graph into a proper

taxonomy, namely a directed acyclic graph (step 4).

Evaluation. We benchmark ContrastMedium by comparing the quality of its output

taxonomies against those obtained with the state-of-the-art approach of Faralli et al.

(2015). The latter relies on Tarjan’s topological sorting, which iteratively searches

for a cycle (until no cycle can be found) and randomly removes an edge from it. We

applied the two approaches to our linked resources and evaluated the performance

on a three-way classification task to automatically detect the level of granularity of

a concept. Pruning accuracy is estimated on the basis of a dataset of ground-truth

judgments that were created using double annotation with adjudication from a

random sample of 1,000 nodes for each noisy hypernym graph (κ = 0.657 (Fleiss

1971)). To produce a gold-standard, coders were asked to classify concepts from the

random sample as (i) a root, top-level abstract concept – i.e. any of entity, object,

etc. and more in general nodes that correspond to abstract concepts that we can

expect to be part of a core ontology such as, for instance, DOLCE (Gangemi et al.

2002); (ii) a leaf terminological node (i.e. instances such as Pet Shop Boys) or (iii)

a middle-level concept (e.g. celebrity), namely concepts not fitting into any of the

previous classes.

We compute standard accuracy for each of the three classes. That is, we compare

the system outputs against the gold standards and obtain three accuracy measures:

one for the root nodes (AR), one for the nodes ‘in the middle’ (AM) and finally one

for the leaf nodes (AL). In Table 14, we show some of the results of the evaluation.

Thanks to ContrastMedium, we are able to achieve, even despite the baseline

already reaching very high performance levels (well above ninety per cent accuracy),

improvements of up to six percentage points, with an overall error reduction between

around forty per cent and sixty per cent. This performance improvements are due

to the fact that ContrastMedium is able to (i) identify important topological clues

among ground-truth taxonomic relations from the reference taxonomy and (ii)

project them onto the noisy graph on the basis of the links found in the mapping

between the two resources. That is, the availability of a mapping between knowledge

resources helps us to project the supervision information from the clean source

taxonomy into the target noisy graph without the need of further supervision. The

reference taxonomy provides us with ground-truth taxonomic relations – this renders

our method as knowledge-based, not knowledge-free. However, the availability of

resources like, for instance, WordNet for English or the multilingual BabelNet

implies that these requirements are nowadays trivially satisfied. The mapping, in

turn can be automatically generated with high precision using any of the existing

solutions for KB mapping, e.g. our algorithm from Section 5, or by relying on
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Table 14. Pruning accuracy of the CM

ContrastMedium

AR AM AL

News-p1.6 98.9% 98.3% 99.3%

News-p2.3 98.7% 98.7% 99.9%

Wiki-p1.8 97.6% 94.7% 97.3%

Wiki-p6.0 95.9% 94.3% 98.3%

Tarjan (baseline)

AR AM AL

News-p1.6 93.3% 94.6% 95.3%

News-p2.3 95.7% 94.7% 95.6%

Wiki-p1.8 93.1% 87.3% 94.1%

Wiki-p6.0 89.5% 90.1% 92.8%

ground-truth information from the Linguistic Linked Open Data cloud (Chiarcos,

Hellmann and Nordhoff 2012).

What is perhaps the most interesting bit in our approach is the fact that

by combining our unsupervised framework for knowledge acquisition from text

(Section 3) with ContrastMedium, we are able to provide an end-to-end solution for

high-quality, unsupervised taxonomy induction from scratch, i.e. without any human

effort.

7.2 Inducing taxonomies from scratch using the hybrid aligned resource

Task definition. We now look at how ContrastMedium can be used as component

within a larger system to enable end-to-end taxonomy acquisition from text. In

general, taxonomy learning from scratch (Bordea et al. 2015, 2016) consists of

the task of inducing a hypernym hierarchy from text alone (Biemann 2005),

this typically starts with an initial step of finding hypernymy relations from

texts, which is followed by a taxonomy construction phase in which local se-

mantic relations are arranged together within a proper global taxonomic structure

(cf. previous Section 7.1).

Related work. Existing approaches like Kozareva and Hovy (2010) (among others)

use Hearst-like patterns (Hearst 1992) to bootstrap the extraction of terminological

sister terms and hypernyms. Instead, in Velardi et al. (2013), the extraction of

hypernymy relations is performed with a classifier, which is trained on a set

of manually annotated definitions from Wikipedia (Navigli and Velardi 2010),

being able to detect definitional sentences and to extract the definiendum and the

hypernym. In these systems, the harvested hypernymy relations are then arranged

into a taxonomy structure, e.g. using cycle pruning and ‘longest path’ heuristics to
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Fig. 6. (Colour online) Our full end-to-end pipeline for taxonomy induction from scratch.

induce a directed acyclic graph structure (Kozareva and Hovy 2010) or by relying

on a variant of Chu-Liu Edmonds’ optimal branching algorithm (Velardi et al.

2013). In general, all such lexical-based approaches suffer from the limitation of not

being sense aware, which results in spurious taxonomic structures. Now, our fully

disambiguated sense inventories could potentially overcome this problem and enable

to a step forward toward the induction of high-quality, full-fledged taxonomies. In

fact, we now show how the linked/semantic nature of our resources enables the

development of a complete approach for taxonomy induction from scratch that

achieves state-of-the-art performance with virtually no explicit supervision.

Using HAR to learn taxonomies from scratch. We now focus on the task of taxonomy

induction by exploiting our HAR. Our approach is based on a five-stages pipeline

as follows (see Figure 6):

(1) Create PCZs as described in Section 4.

(2) Filter out-of-domain concepts from our PCZs on the basis of domain-

terminology-based heuristics. We construct domain-specific PCZs for a target

domain by a simple lexical filtering. First, we build an extended lexicon of

each domain on the basis of a seed vocabulary of the domain – i.e. domain

terminologies such as those provided from the TExEval challenge (see below).

Namely, for each seed term, we retrieve all semantically similar terms on the

basis of the PCZ.

(3) Build an HAR by linking the PCZs to a companion taxonomy (e.g. WordNet,

BabelNet, etc.) based on the methods from Section 5.

(4) Build a noisy hypernym graph by taking the union of the hypernym relations

found within our PCZs.

(5) Apply ContrastMedium (Section 7.1) to remove noise from the graph and obtain

a proper taxonomic structure.

That is, the combination of all our methods we presented so far provides us with a full

end-to-end pipeline for taxonomy induction from scratch. Arguably, our approach

is unsupervised in that it does not require any explicit human effort other than the

knowledge encoded within the reference LRs. Both PCZs and links to reference

knowledge resources are automatically induced in an unsupervised way. Moreover,

links to existing LRs, as used in ContrastMedium, provide us with a source of

knowledge-based supervision that is leveraged to clean PCZs and turn them into

full-fledged taxonomies. More precisely, our framework is fully unsupervised up to
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the linking part. However, unsupervised linking to a knowledge base and using

the knowledge base for taxonomy construction indeed requires the knowledge base

itself. To this end, we use freely available resources like WordNet and BabelNet.

Given the linking, we can exploit the knowledge from these LRs, together with a

knowledge-based method (ContrastMedium), without the need for additional human

effort or supervision. That is, the fact that these lexical knowledge resources already

exist and are publicly available implies that we can apply our framework with no

extra human intervention.

Experiments. We use the evaluation benchmark from the most recent edition of the

TExEval challenge (SemEval 2016 – task 13) (Bordea et al. 2016). Our experimental

setting consists of the following components:

• Three gold-standard taxonomies, namely the FOOD’s sub hierarchy of the

Google products taxonomy,13 as well as the NASEM14 and EuroVoc15

taxonomies of Science.

• The task baseline, which induces the taxonomy structure only from relations

between compound terms such as juice, apple juice by applying simple

substring inclusion heuristics. This baseline approach does not leverage

any external or background knowledge and only uses the input domain

terminology.

• The Cumulative Fowlkes&Mallows evaluation measure (CF&M): this enables

the comparison of a system taxonomy against a gold standard at different

levels of depth of the taxonomy, as obtained by penalizing errors at the

highest cuts of the hierarchy (Velardi et al. 2012).

• The task participant’s systems: (1) the JUNLP system (Maitra and Das 2016)

makes use of two string inclusion heuristics combined with information from

BabelNet; (2) the NUIG–UNLP system (Pocostales 2016) implements a semi-

supervised method that finds hypernym candidates by representing them

as distributional vectors (Mikolov, Yih and Zweig 2013); (3) the QASSIT

system (Cleuziou and Moreno 2016) is a semi-supervised methodology for

the acquisition of lexical taxonomies based on genetic algorithms. It is

based on the theory of pretopology (Gil-Lafuente and Aluja 2012) that

offers a powerful formalism to model semantic relations; (4) our task-

winning TAXI system (Panchenko et al. 2016) that relies on combining two

sources of evidence: substring matching and Hearst-like patterns. Hypernymy

relations are extracted from Wikipedia, GigaWord, ukWaC, a news corpus

and the CommonCrawl, as well as from a set of focused crawls; (5) the

USAAR system (Tan, Bond and van Genabith 2016) exploits the hypernym

endo/exocentricity (Brugmann 1904) as a practical property for hypernym

identification.

13 http://www.google.com/basepages/producttype/taxonomy.en-US.txt
14 http://sites.nationalacademies.org/PGA/Resdoc/PGA 0445
15 http://eurovoc.europa.eu/drupal/
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Table 15. Comparison based on the SemEval 2016 task 13 benchmark for Foods and
Sciences domains. We report the Cumulative Fowlkes&Mallows measure

Google NASEM EuroVoc

System Foods Sciences Sciences

Baseline 0.0019 0.0163 0.0056

JUNLP 0.2608 0.1774 0.1373

NUIG-UNLP – 0.0090 0.1517

QASSIT – 0.5757 0.3893

TAXI 0.2021 0.3634 0.3893

USAAR 0.0000 0.0020 0.0023

WordNet 0.5870 0.5760 0.6243

Our approach 0.6862 0.7000 0.8157

• A reference taxonomy: we use WordNet for evaluation purposes by treating

it the same way as any other participant system’s output.

In Table 15, we report the results on the SemEval gold standards. Our approach

significantly (χ2 test, p < 0.01) outperforms all the other systems in all domains (i.e.

Google Food, NASEM Science and EuroVoc Science), as well as the ground-truth

taxonomy provided by WordNet. More importantly, the results indicate the overall

robustness of our approach; that is, leveraging distributional semantics and symbolic

knowledge (i.e. through linking to reference LRs) together is able to outperform

not only the WordNet gold standard, which has limited coverage for fine-grained

specific domains like these, but also the SemEval task participants, which all rely in

some way or another on simple, yet powerful substring heuristics.

8 Conclusions

We have presented a framework for enriching lexical semantic resources, such

as WordNet, with distributional information. Lexical semantic resources provide a

well-defined semantic representation, but typically contain no corpus-based statistical

information and are static in nature. Distributional semantic methods are well suited

to address both of these problems, since models are induced from (in-domain) text

and can be used to automatize the process of populating ontologies with new

concepts. However, distributional semantic representations based on dense vectors

have also major limitations in that they are uninterpretable on the symbolic level.

By linking these representations to a reference LR, we can interpret them in an

explicit way by means of the underlying relational knowledge model.

We provided a substantial investigation on enrichment of LRs with distributional

semantics and evaluated the results in intrinsic and extrinsic ways showing that the

resulting hybrid sense representations can be successfully applied to a variety of tasks

that involve lexical-semantic knowledge. We tested the quality of the hybrid resources

generated by our framework with a battery of intrinsic evaluations. Additionally,
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we benchmarked the quality of our resource in a knowledge-based WSD setting,

where we showed that our arguably low-resource approach – in that we rely only

on a small LR like WordNet and raw, unlabeled text – reaches comparable quality

with BabelNet, which in contrast is built on top of large amounts of high-quality

collaborative content from Wikipedia. Finally, by combining distributional semantic

vectors with links to a reference LRs, we are able to pave the way to the development

of new algorithms to tackle hard, high-end tasks in knowledge acquisition like

taxonomy cleaning and unsupervised, end-to-end taxonomy learning.

We believe that the hybrid LRs developed in our work will benefit high-end

applications, e.g. ranging from entity-centric search (Lin et al. 2012; Schuhmacher,

Dietz and Ponzetto 2015) all the way through full-fledged document understanding

(Rospocher et al. 2016).

Downloads. We release all resources produced in this work under CC-BY 4.0

License16: (i) the PCZs resulting from our first experiment (Section 6.2); (ii) following

the guidelines in McCrae, Fellbaum and Cimiano (2014), we created an RDF

representation to share the mapping between our PCZs and lexical knowledge

graphs (i.e. WordNet and BabelNet) (see Section 6.3) in the Linked Open Data

Cloud; (iii) the types of the unmapped PCZ senses produced in the third experiment

(see Section 6.4). All datasets, evaluation judgments, source code, and the demo can

be accessed via http://web.informatik.uni-mannheim.de/joint.
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